Thread NSTA Metric prefixes for powers of 10 question

From: physics-request@list.nsta.org [mailto:physics-request@list.nsta.org] On Behalf Of Ann Huber
Sent: Monday, August 27, 2012 9:53 AM
To: physics@list.nsta.org
Subject: metric prefixes for powers of 10

Dear Colleagues,

Today, I had a student ask what the prefixes are for metric units between a nanometer and a millimeter. I have "googled" and am obviously not using the correct prompt.
Does anyone have a link or know those prefixes?

Thanks
Ann Huber
Delta State University
E-Learning: Physics and Physical Science
Cleveland, MS

There isn't one. Officially, there are only 20 metric prefixes.
Perry

Ann,
Here is a great link....
http://www.metricconversion.us/prefixes.htm
Kathy

When all else fails - go to the source. In this case, the Bureau International des Poids et Meseurs and their document entitled the International System of Units. English version, French original is definitive.
Your answer is in Chapter 3. Enjoy!
http://www.bipm.org/utils/common/pdf/si_brochure_8_en.pdf
Edward
$10^{\wedge}-3=$ milli- (millimeter)
$10^{\wedge}-6=$ micro- (micrometer or micron)
$10^{\wedge}-9=$ nano- (nanometer)
$10^{\wedge}-12=$ pico- (picometer)
$10^{\wedge}-15=$ femto- (femtometer)

Bob Drake

My bad - but there is nothing between the common ones ($10^{\wedge}-6,10^{\wedge}-9,10^{\wedge}-12$, etc..)

Perry

Au contraire!!

Millimeters are $1 / 1000$ of a meter. Nanometers are a millionth of that. $1 / 1000$ of a millimeter is called a micrometer!! It is the unit between the two!!

PHIL

Hi Ann,

SI has a specific number of metric prefixes. If you notice from the table, prefixes greater than kilo or smaller than milli are have exponents that are divisible by 3. This might be a nice exploration for the student to pursue... "What effect would inclusion of additional prefixes have on the SI system?"

Best,

Peter

Peter J. McLaren, President
Council of State Science Supervisors
(Office) 401-222-8454
(Fax) 401-222-3605
peter.mclaren@ride.ri.gov
http://www.csss-science.org/

Of course there is the old (like me!) unit helpful to chemists, the Ångstrom:
$10^{\wedge}-10 \mathrm{~m}=1 \AA$ (ångstrom)
Since bond lengths are on the order of one Ångstrom.
Bob Drake

I recommend googling "Powers of Ten" to find video or simulations to link the metric prefixes to the sizes of actual things.
-Jenn Broekman

Tableau 5. Préfixes SI

Facteur	Nom	Symbole	Facteur	Nom	Symbole
10^{1}	déca	da	10^{-1}	déci	d
10^{2}	hecto	h	10^{-2}	centi	c
10^{3}	kilo	k	10^{-3}	milli	m
10^{6}	méga	M	10^{-6}	micro	μ
10^{9}	giga	G	10^{-9}	nano	n
10^{12}	téra	T	10^{-12}	pico	p
10^{15}	péta	P	10^{-15}	femto	f
10^{18}	exa	E	10^{-18}	atto	a
10^{21}	zetta	Z	10^{-21}	zepto	z
10^{24}	yotta	Y	10^{-24}	yocto	y

Edward Werner Cook [ewcook@caprilands.org]

Here's a great link for powers of ten, if you think the old video is a bit outdated (I know my kids do):
http://htwins.net/scale2/
Scale of the Universe 2

It's great on a SMARTBoard too.
Cheers
CHRIS Osters
Physics Teacher, Room 101
Ballard High School
CHRISTOPHER.OSTERS@JEFFERSON.KYSCHOOLS.US
WEBSITE: HTTP:/ / OSTERS.WEEBLY.COM

There is a game available on iTunes called Zombie Slasher which teaches the metric prefixes in a fun way.
L. Tull [lptull@earthlink.net]

Just a little metric humor for you.
$10^{\wedge} 12$ microphones $=1$ megaphone
2000 Mockingbirds $=2$ kilomockingbirds
$10^{\wedge} 21$ picolos $=1$ gigolo
$10^{\wedge} 12$ pins $=1$ terrapin
10 cards $=1$ decacards
10 halls with boughs of holly $=1$ deca halls with balls of holly
$10^{\wedge}-12$ boos $=1$ picaboo
$10^{\wedge} 9$ antics - gigantic
$10^{\wedge} 15$ coats $=1$ petacoat
Rob
Robert Sparks [rsparks@noao.edu]

More
http://www.primepuzzle.com/leesnewest/funny-metric-chart.html
Peter Tordo [ptordo@gmail.com]

Do a search on "SI prefixes" .
There is also "prefixes for binary multiples" adopted by the IEC.
Bob Gannon

There's a lot to be said for the students knowing the accuracy of measurements -- very important.
But I try to get away from mnemonic aids for the metric prefixes -- I think that the kids should just know them, and not just ending with kilo or milli. We're living in an age of nanotechnology. Kids can be deceived if they buy an iPod that stores only 4 Mb of songs instead of 4 Gb . It's the difference between storing 1 mp 3 song and 1000 of them. And disk drives are easily in the 1 Tb range now.
--- Steve >>>>

Steve Cooperman

Physics/Chem/Astronomy Teacher
Campbell Hall (Episcopal)
North Hollywood, CA 91607
$34.15355^{\circ} \mathrm{N}, 118.3969^{\circ} \mathrm{W}$

Observatory Lecturer
Griffith Observatory
Los Angeles, CA 90027
$34.11803^{\circ} \mathrm{N}, 118.30035^{\circ} \mathrm{W}$
Occidental College Physics Teachers' Day
http://members.dslextreme.com/users/oxyday
Norris Hall, Mosher 1
Los Angeles, CA
$34.1259^{\circ} \mathrm{N}, 118.2112^{\circ} \mathrm{W}$

Kurt,
Attached please find the chart that I use for metric conversions.
I also stress the equipment that we use to measure each of these units and their degree of accuracy as shown on the summary matrix.

Howard Alpert
Teacher of Physics
Washington Latin Public Charter High School
Washington, DC
See below

Kilo-means 1.000
Hecto - means 100
Deka-means 10

Chart works around the ones place
e.g. 1 meter, gram or liter

Deci-means $1 / 10$ or 0.1

Centi - means $1 / 100$ or 0.01
Wili - means $1 / 1000$ or 0.001

Measure- ment	What you are measuring	base unit	Abbre - viatio n	Device used to measure	Accurac \mathbf{y}	Helpful hints in using the device
Length	Distance between two points	Meter	cm	Metric ruler	1 mm $(0.1 \mathrm{~cm})$	Look at ruler from above, not from the side.
Mass	Amount of matter in a substance	Gram	mg	Triple beam balance	0.1 g	Carry the balance with two hands, zero out before using
Volume (liquid)	Amount of space a liquid or gas takes up	Liter	mL cm^{3}	Graduated cylinder	1 mL	Keep eyes level with the cylinder. Read the bottom of the meniscus.
Volume (regular solid)	Amount of space a a rectangular solid takes up	Cubic centimet er	cm^{3}	Metric ruler, calculator	$0.1 \mathrm{~cm}^{3}$	Use calculator to find the product of length, width and height. Round out the answer to the tenths place.
Volume (irregular solid)	Amount of space an irregular solid takes up.	Cubic centimet er (mL)	cm^{3} mL	Overflow cup, graduated cylinder	1 mL	Fill cup to overflowing. Allow dripping to cease before dropping item into overflow cup.
Density	How close the particles of a substance are to one another	Grams $/$ cubic centimet er	$\mathrm{g} / \mathrm{cm}^{3}$	Triple beam balance and devices for measuring volume+ calculator	$0.1 \mathrm{~g} /$ cm^{3}	Obey rules for volume and mass.

Thanks to all who sent suggestions. I knew I was not familiar with the prefixes for those between nanometer and millimeter and feel much better to know that the "inbetweens" are not listed. I thought maybe I was having a "senior moment".

I especially liked the suggestion that students contemplate why not and what they might be and how they might be used if they were included.
Thanks again. Have a great day.
Ann Huber
Delta State University
E-Learning: Physics and Physical Science
Cleveland, MS

