Atmospheric Optics

Stan Jones
Department of Physics and Astronomy

PS-21 First Fall Institute
Concept 2: Light and Color
September 28, 2012

What can happen to light from the sun???

- Scatter (bounce): off of molecules, particles
- Reflection: off drops of water or crystals of ice
- Refraction: water or ice
- Internal reflection: inside water or ice
- Diffraction: around drops or small crystals
- Interference: with other nearby light waves

Colors in the Sky

- I will start with the most basic question:
 - Why is the sky blue?
- And then, why are sunsets red?

Why the sky is blue, sunsets are red

- Scattering of light off stuff in air
- Blue scatters more than green or red

Blue sky, white and pink clouds

Sunset near Savannah

Alberta (CA) sunset after storm

Mirages and the Green Flash

The Green Flash!!

- While we are on the subject of sunsets, here is something I have looked for many times but never seen.
- It helps if you are up high relative to the water, and if the water is warm. This produces a mirage of the sun.

Why Green??

- Green gets refracted more
- So do blue and violet
- But they get scattered (that's why sunset is red...)
- But, sometimes yellow, purple flashes are also seen

Formed by inversion in air temp: "Mock-Mirage"

Purple flash

Reflection and Refraction

Dispersion (hands-on)

Rainbows

At the Mall

Tennesee

Rainbow formation

Secondary Bow

 http://www.atoptics.co.uk/rainbows/ord2for m.htm#

A Moonbow

Glassbow

Interference

Slide 13 Fig. 18.9, p.551

Interference

Interference in a soap film

Using a diffraction grating

Hands on again!

A Model Calculation

Supernumeraries

Another

The Glory

- This is an interference effect
- Simulations take into account light rays (waves) striking a raindrop on all parts of the surface.
- Variable drop sizes
- Model suggested by Mie in 1920, but requires powerful computers for implementation

Solar Corona and Aureole

Solar Corona

Iridescent Clouds

Lunar Corona

Heiligenschein

Effects of ice crystals

Refraction through a crystal

22 degree solar halo

Lunar Halo...and Mars

Parhelic Circle, 22° Halo, Circumscribed arc, and sun dogs over the Dead Sea

Parhelic circle over U of A

Circumzenithal Arc over the golf course

22 Degree Solar Halo

Preview of coming slide

 The upper part of the circumscribed halo is visible, curving downwards over the fainter
 22º halo and intercepting the parhelic circle at the sundogs.

Several Things Here

Pillar Reflections off of ice crystals

Sundogs Again

http://www.atoptics.co.uk/

http://www.photon echoes.com/atmospheric optics.htm

In case time allows

- Polarization effects (yet another hands-on!)
- Why clouds are white