PS-21 First Spring Institute say 2012-2013: Teaching Physical Science

Radioactivity

What Is Radioactivity?

 Radioactivity is the release of tiny, highenergy particles or gamma rays from the nucleus of an atom

Types of Radioactive Decay

- Rutherford discovered three types of rays
 - alpha (α) rays
 - have a charge of +2 and a mass of 4 amu
 - helium nucleus
 - beta (β) rays
 - have a charge of -1 and small mass (<< 1 amu)
 - electron
 - gamma (γ) rays
 - electromagnetic radiation
- In addition, some unstable nuclei emit positrons
 - "a positively charged electron"
- Some unstable nuclei will undergo electron capture
 - a low energy electron is pulled into the nucleus

Penetrating Ability of Radioactive Rays

Pieces of Lead

Penetrating Ability

<u>Radiation</u>	<u>Range</u>	<u>Shielding</u>
α	2.5-8 cm (air)	Paper (dead layers of skin for low energy)
β	15-1600 cm (air)	Low atomic number materials (Plexiglass)
γ	HVL air 1.3-13 m	Lead or high
	HVL lead 0.02	density material
	- 1.5 cm	
HVI (half-value lav	er) – thickness of ma	terial required to

reduce the original radiation intensity by 1/2

Facts About the Nucleus

 Every atom of an element has the same number of protons

- atomic number (Z)

 Atoms of the same elements can have different numbers of neutrons

- isotopes

- different atomic masses
- Isotopes are identified by their mass number
 (A)
 - mass number = number of protons + neutrons

Tro: Chemistry: A Molecular Approach

Facts About the Nucleus

- The number of neutrons is calculated by subtracting the atomic number from the mass number
- The nucleus of an isotope is called a nuclide
 - less than 10% of the known nuclides are nonradioactive, most are radionuclides
- Each nuclide is identified by a symbol
 Element Mass Number = X A

mass number $Element = {}^{A}_{Z}X$

Radioactivity

- Radioactive nuclei spontaneously decompose into smaller nuclei
 - radioactive decay
 - we say that radioactive nuclei are **unstable**
 - decomposing involves the nuclide emitting a particle and/or energy
- The parent nuclide is the nucleus that is undergoing radioactive decay
- The daughter nuclide is the new nucleus that is made
- All nuclides with 84 or more protons are radioactive

Important Atomic Symbols

Particle	Symbol	Nuclear Symbol
proton	p+	$^{1}_{1}H ^{1}_{1}p$
neutron	n ^o	¹ 0
electron	e	⁰ 1 e
alpha	α	${}^{4}_{2}\alpha {}^{4}_{2}He$
beta	β, β-	⁰ ₋₁ β ⁰ ₋₁ e
positron	β, β+	⁰ ₊₁ β ⁰ ₊₁ e

Transmutation

- Rutherford discovered that during the radioactive process, atoms of one element are changed into atoms of a different element – transmutation
 - ✓ showing that statement 3 of Dalton's Atomic Theory is not valid all the time, only for *chemical* reactions
- For one element to change into another, the number of protons in the nucleus must change!

Tro: Chemistry: A Molecular CONT Person Educator. In: Approach

Nuclear Equations

- In the nuclear equation, mass numbers and atomic numbers are conserved
- We can use this fact to determine the identity of a daughter nuclide if we know the parent and mode of decay

Tro: Chemistry: A Molecular Approach

Alpha Emission

 An α particle contains 2 protons and 2 neutrons

✓ helium nucleus

- Most ionizing, but least penetrating of the types of radioactivity
- Loss of an alpha particle means
 ✓ atomic number decreases by 2
 - ✓ mass number decreases by 4

Tro: Chemistry: A Molecular Approach

Beta Emission

- A β particle is an electron
 - moving very faster
 - produced from the nucleus
- About 10 times more penetrating than α , but only about half the ionizing ability
- When an atom loses a β particle its
 - atomic number increases by 1
 - mass number remains the same
- In beta decay, a neutron changes into a proton $^{234}_{90}\text{Th} \rightarrow ^{0}_{-1}\text{e} + ^{234}_{91}\text{Pa}$

Tro: Chemistry: A Molecular Approach

Gamma Emission $\begin{array}{c} 0\\ 0\\ \end{array}$

- Gamma (γ) rays are high energy photons of light
- No change in the composition of the nucleus same atomic number and mass number
- Least ionizing, but most penetrating
- Generally occurs after the nucleus undergoes some other type of decay and the remaining particles rearrange

Positron Emission

- Positron has a charge of +1
 anti-electron
 0
 +1
 <li
- Similar to beta particles in their ionizing and penetrating ability
- When an atom loses a positron from the nucleus, its
 - mass number remains the same
 - atomic number decreases by 1
- Positrons result from a proton changing into a neutron ${}^{22}_{11}Na \rightarrow {}^{0}_{+1}e + {}^{22}_{10}Ne$

Tro: Chemistry: A Molecular Approach

Electron Capture

- Occurs when an inner orbital electron is pulled into the nucleus
- No particle emission, but atom changes
 same result as positron emission
- Proton combines with the electron to make a neutron
 - mass number stays the same
 - atomic number decreases by one

$$^{92}_{44}$$
Ru + $^{0}_{-1}$ e $\rightarrow ^{92}_{43}$ Tc

$$^{92}_{44}$$
Ru $\rightarrow ~^{92}_{43}$ Tc

Particle Changes

Beta Emission – neutron changing into a proton

 $_{0}^{1}n \rightarrow _{1}^{1}p + _{-1}^{0}\beta$

• Positron Emission – proton changing into a neutron

$$^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{+1}\beta$$

• Electron Capture – proton changing into a neutron

$${}^{1}_{1}p + {}^{0}_{-1}e \rightarrow {}^{1}_{0}n$$

Approach

Detecting Radioactivity

To detect something, you need to identify what it does

- Radioactive rays can expose light-protected
 photographic film
- We may use photographic film to detect the presence of radioactive rays *film badge*

dosimeters

Tro: Chemistry: A Molecular Approach

© 2011 Pearson Education, Inc.

Detecting Radioactivity

- Radioactive rays cause air to become ionized
- A Geiger-Müller counter works by counting electrons generated when Ar gas atoms are ionized by radioactive rays

Tro: Chemistry: A Molecular Approach

Kinetics of Radioactive Decay

• Rate = kN

– N = number of radioactive nuclei

- $t_{1/2} = 0.693/k$
- the shorter the half-life, the more nuclei decay every second – we say the sample is hotter

$$\ln \frac{N_{t}}{N_{0}} = -kt = \ln \frac{\text{rate}_{t}}{\text{rate}_{0}}$$

Pattern for Radioactive Decay

Decay of Radon-220

Approach

Half-Lives of Various Nuclides

Nuclide	Half-Life	Type of Decay
Th-232	1.4 x 10 ¹⁰ yr	alpha
U–238	4.5 x 10 ⁹ yr	alpha
C-14	5730 yr	beta
Rn-220	55.6 sec	alpha
Th-219	1.05 x 10 ⁻⁶ sec	alpha

Biological Effects of Radiation

 Radiation has high energy, energy enough to knock electrons from molecules and break bonds

– ionizing radiation

 Energy transferred to cells can damage biological molecules and cause malfunction of the cell

Acute Effects of Radiation

- High levels of radiation over a short period of time kill large numbers of cells

 from a nuclear blast or exposed reactor core
- Causes weakened immune system and lower ability to absorb nutrients from food
 – may result in death, usually from infection

Chronic Effects

- Low doses of radiation over a period of time show an increased risk for the development of cancer
 - radiation damages DNA that may not get repaired properly
- Low doses over time may damage reproductive organs, which may lead to sterilization
- Damage to reproductive cells may lead to genetic defects in offspring

Measuring Radiation Exposure

- The curie (Ci) is an exposure of 3.7 x 10¹⁰ events per second
 - no matter the kind of radiation
- The gray (Gy) measures the amount of energy absorbed by body tissue from radiation

-1 Gy = 1 J/kg body tissue

 The rad also measures the amount of energy absorbed by body tissue from radiation

- 1 rad = 0.01 Gy

- A correction factor is used to account for a number of factors that affect the result of the exposure – this biological effectiveness factor is the RBE, and the result is the dose in rems
 - rads x RBE = rems
 - rem = roentgen equivalent man

Factors that Determine the Biological Effects of Radiation

- 1. The more energy the radiation has, the larger its effect can be
- 2. The better the ionizing radiation penetrates human tissue, the deeper effect it can have
 - Gamma >> Beta > Alpha
- 3. The more ionizing the radiation, the larger the effect of the radiation
 - Alpha > Beta > Gamma
- 4. The radioactive half-life of the radionuclide
- 5. The biological half-life of the element
- 6. The physical state of the radioactive material

Tro: Chemistry: A Molecular Approach

TABLE 19.4 Exposure by Source for Persons Living in the United States				
Source	Dose			
Natural Radiation				
A 5-hour jet airplane ride	2.5 mrem/trip (0.5 mrem/hr at 39,000 feet) (whole body dose)			
Cosmic radiation from outer space	27 mrem/yr (whole body dose)			
Terrestrial radiation	28 mrem/yr (whole body dose)			
Natural radionuclides in the body	35 mrem/yr (whole body dose)			
Radon gas	200 mrem/yr (lung dose)			
Diagnostic Medical Procedures				
Chest X-ray	8 mrem (whole body dose)			
Dental X-rays (panoramic)	30 mrem (skin dose)			
Dental X-rays (two bitewings)	80 mrem (skin dose)			
Mammogram	138 mrem per image			
Barium enema (X-ray portion only)	406 mrem (bone marrow dose)			
Upper gastrointestinal tract test	244 mrem (X-ray portion only) (bone marrow dose)			
Thallium heart scan	500 mrem (whole body dose)			
Consumer Products				
Building materials	3.5 mrem/year (whole body dose)			
Luminous watches (H-3 and Pm-147)	0.04–0.1 mrem/year (whole body dose)			
Tobacco products (to smokers of 30 cigarettes per day)	16,000 mrem/year (bronchial epithelial dose)			

Source: Department of Health and Human Services, National Institutes of Health. © 2011 Pearson Education, Inc.

Biological Effects of Radiation

• The amount of danger to humans of radiation is measured in the unit rems

Dose (rems)	Probable Outcome
20-100	decreased white blood cell count; possible increased cancer risk
100-400	radiation sickness; increased cancer risk
500	Death of ½ of exposed population within 30 days of exposure

Exposures

- Three Mile Island 20 Ci released; no one exposed to >100 rem
- Chernobyl 50 x 10⁶ 100 x 10⁶ Ci; firefighters received >100 rem